Intro to Optimization Through the Lens of Data Science Pt. 3

Intro to Optimization Through the Lens of Data Science Pt. 3, A comprehensive introduction to mathematical optimization and gurobipy tailored to data scientists and problem solvers.

Course Description

Welcome to Introduction to Optimization Through the Lens of Data Science!

This free 4-part course was developed to help teach data scientists how to add optimization to their toolbox and when to use it in their advanced problem-solving. We will cover a comprehensive introduction to optimization, when optimization is the best tool to solve a problem, and how to translate real-life problems into optimization.

We will introduce you to world-class tools to help you problem solve, and provide everything from basic hands-on exercises to more advanced full real-world use cases to reinforce all new concepts of prescriptive analytics as you learn them. We look forward to having you learn optimization (and gurobipy) with expertise from Dr. Joel Sokol and the team of Ph.D. experts from Gurobi Optimization, who helped develop this comprehensive introduction to mathematical optimization.

In part 3, you will model yes/no decisions and complex logical constraints with binary variables and link them to continuous variables. You will also explore classic optimization model archetypes.

Hands-on Exercises:

Please check the resource section of many of the lectures to find self-assessments in the form of exercise files and solution files. You will also notice we have data and code files available to help you work your way through these practice exercises.


Online Tutorials
Show full profile

Online Tutorials

Online Tutorials is a website sharing online courses, and online tutorials for free on a daily basis. You can find the best free online courses and thousands of free online courses with certificates to take your knowledge to the next level with the free courses.

We will be happy to hear your thoughts

Leave a reply

Online College Courses
Logo
Register New Account