Statistics and Hypothesis Testing for Data science
Statistics and Hypothesis Testing for Data science, “Mastering Data Analysis and Making Informed Decisions with Statistical Hypothesis Testing in Data Science”.
Course Description
Welcome to “Statistics and Hypothesis Testing for Data Science” – a comprehensive Udemy course that will empower you with the essential statistical knowledge and data analysis skills needed for success in the world of data science.
Here’s what you’ll learn:
- Delve into the world of data-driven insights and discover how statistics plays a pivotal role in shaping our understanding of information.
- Equip yourself with the essential Python skills required for effective data manipulation and visualization.
- Learn to categorize data, setting the stage for meaningful analysis.
- Discover how to summarize data with measures like mean, median, and mode.
- Explore the variability in data using concepts like range, variance, and standard deviation.
- Understand relationships between variables with correlation and covariance.
- Grasp the shape and distribution of data using techniques like quartiles and percentiles.
- Learn to standardize data and calculate z-scores.
- Dive into probability theory and its practical applications.
- Lay the foundation for probability calculations with set theory.
- Explore the probability of events under certain conditions.
- Uncover the power of Bayesian probability in real-world scenarios.
- Solve complex counting problems with ease.
- Understand the concept of random variables and their role in probability.
- Explore various probability distributions and their applications.
This course will empower you with the knowledge and skills needed to analyze data effectively, make informed decisions, and apply statistical methods in a data science context. Whether you’re a beginner or looking to deepen your statistical expertise, this course is your gateway to mastering statistics for data science. Enroll now and start your Journey!